A multiplicative inverse for a number x, is a number which when multiplied by x yields the multiplicative identity, 1

The multiplicative inverse of a rational number is . \(\frac{a}{b}\) is \(\frac{b}{a}.\)

**Therefore,**

**(i)** The multiplicative inverse of \(\frac{13}{25}= \frac{25}{13}.\)

**(ii)** The multiplicative inverse of \(\frac{-17}{12}=\frac{12}{-17}.\)

In standard form,

\(\frac{12}{-17}=\frac{12\times-1}{-17\times-1}= \frac{12}{-17}.\)

**(iii) **The multiplicative inverse of \(\frac{-7}{24}=\frac{24}{-7}.\)

In standard form

\(\frac{24}{-7} = \frac{24 \times -1}{-4 \times -1} = \frac{-24}{7}\)

**(iv) **The multiplicative inverse of 18 = \(\frac{1}{18}.\)

**(v) **The multiplicative inverse of \(-6=\frac{1}{-6}.\)

\(\frac{1}{-6}=\frac{1\times-1}{-6\times-1}=\frac{-1}{6}\)

**(vi)** The multiplicative inverse of \(\frac{-3}{-5}=\frac{-5}{-3}.\)

In standard form,

\(\frac{-5}{-3}= \frac{-5\times-1}{-3\times-1}=\frac{3}{5}\)

**(vii) **The multiplicative inverse of -1 =-1.

**(viii)** The multiplicative inverse of \(\frac{0}{2}\)is undefined.

Since, \(\frac{2}{0}\)is undefined.

**(ix)** The multiplicative inverse of \(\frac{2}{-5}= \frac{-5}{2}.\)

**(x)** The multiplicative inverse of \(\frac{-1}{8}= \frac{8}{-1}.\)

In standard form,

\(\frac{8}{-1}= \frac{8\times-1}{-1\times-1}=\frac{-8}{1}=-8\)